A Scanline-based Algorithm for the 2d Free-form Bin Packing Problem
نویسنده
چکیده
This paper describes a heuristic algorithm for the two-dimensional free-form bin packing (2DFBP) problem, which is also called the irregular cutting and packing, or nesting problem. Given a set of 2D free-form bins, which in practice may be plate materials, and a set of 2D free-form items, which in practice may be plate parts to be cut out of the materials, the 2D-FBP problem is to lay out items inside one or more bins in such a way that the number of bins used is minimized, and for each bin, the yield is maximized. The proposed algorithm handles the problem as a variant of the one-dimensional bin-packing problem; i.e., items and bins are approximated as sets of scanlines, and scanlines are packed. The details of the algorithm are given, and its application to a nesting problem in a shipbuilding company is reported. The proposed algorithm consists of the basic and the group placement algorithms. The basic placement algorithm is a variant of the first-fit decreasing algorithm which is simply extended from the one-dimensional case to the two-dimensional case by a novel scanline approximation. The group placement algorithm is an extension of the basic placement algorithm with recombination of input items. A numerical study with real instances shows that the basic placement algorithm has sufficient performance for most of the instances, however, the group placement algorithm is required when items must be aligned in columns. The qualities of the resulting layouts are good enough for practical use, and the processing times required for both algorithms are much faster than those by manual nesting.
منابع مشابه
Extending Two-Dimensional Bin Packing Problem: Consideration of Priority for Items
In this paper a two-dimensional non-oriented guillotine bin packing problem is studied when items have different priorities. Our objective is to maximize the total profit which is total revenues minus costs of used bins and wasted area. A genetic algorithm is developed to solve this problem where a new coding scheme is introduced. To evaluate the performance of the proposed GA, first an upper b...
متن کاملA new metaheuristic genetic-based placement algorithm for 2D strip packing
Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. I...
متن کاملAn Application of Bin-Packing to Multiprocessor Scheduling
Processing Time first algorithm always finds a schedule having makespan within 43 1. Key words, bin packing, multiprocessor scheduling, approximation.Single capacity bin-packing algorithms were applied to solve this problem. Available system resources, the scheduling algorithm must be able to maintain a job working set. Bounds for multiprocessor scheduling with resource.We consider a natural ge...
متن کاملAbstract: Packing rectangular shapes into a rectangular space is one of the most important discussions on Cutting & Packing problems (C;P) such as: cutting problem, bin-packing problem and distributor's pallet loading problem, etc. Assume a set of rectangular pieces with specific lengths, widths and utility values. Also assume a rectangular packing space with specific width and length. The obj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004